Tuesday, July 1, 2014

Half Adder and full adder

The Half Adder Circuit


 From the truth table we can see that the SUM (S) output is the result of the Ex-OR gate and the Carry-out (Cout) is the result of the AND gate. One major disadvantage of the Half Adder circuit when used as a binary adder, is that there is no provision for a "Carry-in" from the previous circuit when adding together multiple data bits. For example, suppose we want to add together two 8-bit bytes of data, any resulting carry bit would need to be able to "ripple" or move across the bit patterns starting from the least significant bit (LSB). The most complicated operation the half adder can do is "1 + 1" but as the half adder has no carry input the resultant added value would be incorrect. One simple way to overcome this problem is to use a Full Adder type binary adder circuit.

The Full Adder Circuit
The main difference between the Full Adder and the previous seen Half Adder is that a full adder has three inputs, the same two single bit binary inputs A and B as before plus an additional Carry-In (C-in) input as shown below.
 

1 comments: